kuromoji_tokenizer
The kuromoji_tokenizer accepts the following settings:
mode- The tokenization mode determines how the tokenizer handles compound and unknown words. It can be set to:
normal-
Normal segmentation, no decomposition for compounds. Example output:
関西国際空港 アブラカダブラ search-
Segmentation geared towards search. This includes a decompounding process for long nouns, also including the full compound token as a synonym. Example output:
関西, 関西国際空港, 国際, 空港 アブラカダブラ extended-
Extended mode outputs unigrams for unknown words. Example output:
関西, 関西国際空港, 国際, 空港 ア, ブ, ラ, カ, ダ, ブ, ラ discard_punctuation- Whether punctuation should be discarded from the output. Defaults to
true. lenient- Whether the
user_dictionaryshould be deduplicated on the providedtext. False by default causing duplicates to generate an error. user_dictionary- The Kuromoji tokenizer uses the MeCab-IPADIC dictionary by default. A
user_dictionarymay be appended to the default dictionary. The dictionary should have the following CSV format:
<text>,<token 1> ... <token n>,<reading 1> ... <reading n>,<part-of-speech tag>
As a demonstration of how the user dictionary can be used, save the following dictionary to $ES_HOME/config/userdict_ja.txt:
東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞
You can also inline the rules directly in the tokenizer definition using the user_dictionary_rules option:
PUT kuromoji_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"kuromoji_user_dict": {
"type": "kuromoji_tokenizer",
"mode": "extended",
"user_dictionary_rules": ["東京スカイツリー,東京 スカイツリー,トウキョウ スカイツリー,カスタム名詞"]
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "kuromoji_user_dict"
}
}
}
}
}
}
nbest_cost/nbest_examples- Additional expert user parameters
nbest_costandnbest_examplescan be used to include additional tokens that are most likely according to the statistical model. If both parameters are used, the largest number of both is applied. nbest_cost- The
nbest_costparameter specifies an additional Viterbi cost. The KuromojiTokenizer will include all tokens in Viterbi paths that are within the nbest_cost value of the best path. nbest_examples- The
nbest_examplescan be used to find anbest_costvalue based on examples. For example, a value of /箱根山-箱根/成田空港-成田/ indicates that in the texts, 箱根山 (Mt. Hakone) and 成田空港 (Narita Airport) we’d like a cost that gives is us 箱根 (Hakone) and 成田 (Narita).
Then create an analyzer as follows:
PUT kuromoji_sample
{
"settings": {
"index": {
"analysis": {
"tokenizer": {
"kuromoji_user_dict": {
"type": "kuromoji_tokenizer",
"mode": "extended",
"discard_punctuation": "false",
"user_dictionary": "userdict_ja.txt",
"lenient": "true"
}
},
"analyzer": {
"my_analyzer": {
"type": "custom",
"tokenizer": "kuromoji_user_dict"
}
}
}
}
}
}
GET kuromoji_sample/_analyze
{
"analyzer": "my_analyzer",
"text": "東京スカイツリー"
}
The above analyze request returns the following:
{
"tokens" : [ {
"token" : "東京",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
}, {
"token" : "スカイツリー",
"start_offset" : 2,
"end_offset" : 8,
"type" : "word",
"position" : 1
} ]
}
discard_compound_token-
Whether original compound tokens should be discarded from the output with
searchmode. Defaults tofalse. Example output withsearchorextendedmode and this optiontrue:関西, 国際, 空港
If a text contains full-width characters, the kuromoji_tokenizer tokenizer can produce unexpected tokens. To avoid this, add the icu_normalizer character filter to your analyzer. See Normalize full-width characters.