AlibabaCloud AI Search inference integration
Elastic Stack Serverless
Refer to the Inference APIs for further information.
Creates an inference endpoint to perform an inference task with the alibabacloud-ai-search
service.
PUT /_inference/<task_type>/<inference_id>
<inference_id>
- (Required, string) The unique identifier of the inference endpoint.
<task_type>
-
(Required, string) The type of the inference task that the model will perform.
Available task types:
completion
,rerank
sparse_embedding
,text_embedding
.
chunking_settings
-
(Optional, object) Chunking configuration object. Refer to Configuring chunking to learn more about chunking.
max_chunk_size
- (Optional, integer) Specifies the maximum size of a chunk in words. Defaults to
250
. This value cannot be higher than300
or lower than20
(forsentence
strategy) or10
(forword
strategy). overlap
- (Optional, integer) Only for
word
chunking strategy. Specifies the number of overlapping words for chunks. Defaults to100
. This value cannot be higher than the half ofmax_chunk_size
. sentence_overlap
- (Optional, integer) Only for
sentence
chunking strategy. Specifies the numnber of overlapping sentences for chunks. It can be either1
or0
. Defaults to1
. strategy
- (Optional, string) Specifies the chunking strategy. It could be either
sentence
orword
.
service
- (Required, string) The type of service supported for the specified task type. In this case,
alibabacloud-ai-search
. service_settings
-
(Required, object) Settings used to install the inference model.
These settings are specific to the
alibabacloud-ai-search
service.api_key
- (Required, string) A valid API key for the AlibabaCloud AI Search API.
service_id
- (Required, string) The name of the model service to use for the inference task.
Available service_ids for the
completion
task:*
ops-qwen-turbo
*qwen-turbo
*qwen-plus
*qwen-max
÷qwen-max-longcontext
For the supported
completion
service_ids, refer to the documentation.Available service_id for the
rerank
task is:*
ops-bge-reranker-larger
For the supported
rerank
service_id, refer to the documentation.Available service_id for the
sparse_embedding
task:*
ops-text-sparse-embedding-001
For the supported
sparse_embedding
service_id, refer to the documentation.Available service_ids for the
text_embedding
task:*
ops-text-embedding-001
*ops-text-embedding-zh-001
*ops-text-embedding-en-001
*ops-text-embedding-002
For the supported
text_embedding
service_ids, refer to the documentation.host
- (Required, string) The name of the host address used for the inference task. You can find the host address at the API keys section of the documentation.
workspace
- (Required, string) The name of the workspace used for the inference task.
rate_limit
- (Optional, object) By default, the
alibabacloud-ai-search
service sets the number of requests allowed per minute to1000
. This helps to minimize the number of rate limit errors returned from AlibabaCloud AI Search. To modify this, set therequests_per_minute
setting of this object in your service settings:
text "rate_limit": { "requests_per_minute": <<number_of_requests>> }
task_settings
-
(Optional, object) Settings to configure the inference task. These settings are specific to the
<task_type>
you specified.`task_settings` for the `text_embedding` task type
input_type
- (Optional, string) Specifies the type of input passed to the model. Valid values are:
*
ingest
: for storing document embeddings in a vector database.
*search
: for storing embeddings of search queries run against a vector database to find relevant documents.`task_settings` for the `sparse_embedding` task type
input_type
- (Optional, string) Specifies the type of input passed to the model. Valid values are:
*
ingest
: for storing document embeddings in a vector database.
*search
: for storing embeddings of search queries run against a vector database to find relevant documents.return_token
- (Optional, boolean) If
true
, the token name will be returned in the response. Defaults tofalse
which means only the token ID will be returned in the response.
The following example shows how to create an inference endpoint called alibabacloud_ai_search_completion
to perform a completion
task type.
PUT _inference/completion/alibabacloud_ai_search_completion
{
"service": "alibabacloud-ai-search",
"service_settings": {
"host" : "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"api_key": "{{API_KEY}}",
"service_id": "ops-qwen-turbo",
"workspace" : "default"
}
}
The next example shows how to create an inference endpoint called alibabacloud_ai_search_rerank
to perform a rerank
task type.
PUT _inference/rerank/alibabacloud_ai_search_rerank
{
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "<api_key>",
"service_id": "ops-bge-reranker-larger",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
}
The following example shows how to create an inference endpoint called alibabacloud_ai_search_sparse
to perform a sparse_embedding
task type.
PUT _inference/sparse_embedding/alibabacloud_ai_search_sparse
{
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "<api_key>",
"service_id": "ops-text-sparse-embedding-001",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
}
The following example shows how to create an inference endpoint called alibabacloud_ai_search_embeddings
to perform a text_embedding
task type.
PUT _inference/text_embedding/alibabacloud_ai_search_embeddings
{
"service": "alibabacloud-ai-search",
"service_settings": {
"api_key": "<api_key>",
"service_id": "ops-text-embedding-001",
"host": "default-j01.platform-cn-shanghai.opensearch.aliyuncs.com",
"workspace": "default"
}
}