Bucket correlation aggregation
A sibling pipeline aggregation which executes a correlation function on the configured sibling multi-bucket aggregation.
buckets_path
- (Required, string) Path to the buckets that contain one set of values to correlate. For syntax, see
buckets_path
Syntax. function
-
(Required, object) The correlation function to execute.
Properties of `function`
count_correlation
- (Required*, object) The configuration to calculate a count correlation. This function is designed for determining the correlation of a term value and a given metric. Consequently, it needs to meet the following requirements.
* The
buckets_path
must point to a_count
metric.
* The total count of all thebucket_path
count values must be less than or equal toindicator.doc_count
.
* When utilizing this function, an initial calculation to gather the requiredindicator
values is required.indicator
: (Required, object) The indicator with which to correlate the configuredbucket_path
values.doc_count
: (Required, integer) The total number of documents that initially created theexpectations
. It’s required to be greater than or equal to the sum of all values in thebuckets_path
as this is the originating superset of data to which the term values are correlated.expectations
: (Required, array) An array of numbers with which to correlate the configuredbucket_path
values. The length of this value must always equal the number of buckets returned by thebucket_path
.fractions
: (Optional, array) An array of fractions to use when averaging and calculating variance. This should be used if the pre-calculated data and thebuckets_path
have known gaps. The length offractions
, if provided, must equalexpectations
.
A bucket_correlation
aggregation looks like this in isolation:
{
"bucket_correlation": {
"buckets_path": "range_values>_count", 1
"function": {
"count_correlation": { 2
"indicator": {
"expectations": [...],
"doc_count": 10000
}
}
}
}
}
- The buckets containing the values to correlate against.
- The correlation function definition.
The following snippet correlates the individual terms in the field version
with the latency
metric. Not shown is the pre-calculation of the latency
indicator values, which was done utilizing the percentiles aggregation.
This example is only using the 10s percentiles.
POST correlate_latency/_search?size=0&filter_path=aggregations
{
"aggs": {
"buckets": {
"terms": { 1
"field": "version",
"size": 2
},
"aggs": {
"latency_ranges": {
"range": { 2
"field": "latency",
"ranges": [
{ "to": 0.0 },
{ "from": 0, "to": 105 },
{ "from": 105, "to": 225 },
{ "from": 225, "to": 445 },
{ "from": 445, "to": 665 },
{ "from": 665, "to": 885 },
{ "from": 885, "to": 1115 },
{ "from": 1115, "to": 1335 },
{ "from": 1335, "to": 1555 },
{ "from": 1555, "to": 1775 },
{ "from": 1775 }
]
}
},
"bucket_correlation": { 3
"bucket_correlation": {
"buckets_path": "latency_ranges>_count",
"function": {
"count_correlation": {
"indicator": {
"expectations": [0, 52.5, 165, 335, 555, 775, 1000, 1225, 1445, 1665, 1775],
"doc_count": 200
}
}
}
}
}
}
}
}
}
- The term buckets containing a range aggregation and the bucket correlation aggregation. Both are utilized to calculate the correlation of the term values with the latency.
- The range aggregation on the latency field. The ranges were created referencing the percentiles of the latency field.
- The bucket correlation aggregation that calculates the correlation of the number of term values within each range and the previously calculated indicator values.
And the following may be the response:
{
"aggregations" : {
"buckets" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "1.0",
"doc_count" : 100,
"latency_ranges" : {
"buckets" : [
{
"key" : "*-0.0",
"to" : 0.0,
"doc_count" : 0
},
{
"key" : "0.0-105.0",
"from" : 0.0,
"to" : 105.0,
"doc_count" : 1
},
{
"key" : "105.0-225.0",
"from" : 105.0,
"to" : 225.0,
"doc_count" : 9
},
{
"key" : "225.0-445.0",
"from" : 225.0,
"to" : 445.0,
"doc_count" : 0
},
{
"key" : "445.0-665.0",
"from" : 445.0,
"to" : 665.0,
"doc_count" : 0
},
{
"key" : "665.0-885.0",
"from" : 665.0,
"to" : 885.0,
"doc_count" : 0
},
{
"key" : "885.0-1115.0",
"from" : 885.0,
"to" : 1115.0,
"doc_count" : 10
},
{
"key" : "1115.0-1335.0",
"from" : 1115.0,
"to" : 1335.0,
"doc_count" : 20
},
{
"key" : "1335.0-1555.0",
"from" : 1335.0,
"to" : 1555.0,
"doc_count" : 20
},
{
"key" : "1555.0-1775.0",
"from" : 1555.0,
"to" : 1775.0,
"doc_count" : 20
},
{
"key" : "1775.0-*",
"from" : 1775.0,
"doc_count" : 20
}
]
},
"bucket_correlation" : {
"value" : 0.8402398981360937
}
},
{
"key" : "2.0",
"doc_count" : 100,
"latency_ranges" : {
"buckets" : [
{
"key" : "*-0.0",
"to" : 0.0,
"doc_count" : 0
},
{
"key" : "0.0-105.0",
"from" : 0.0,
"to" : 105.0,
"doc_count" : 19
},
{
"key" : "105.0-225.0",
"from" : 105.0,
"to" : 225.0,
"doc_count" : 11
},
{
"key" : "225.0-445.0",
"from" : 225.0,
"to" : 445.0,
"doc_count" : 20
},
{
"key" : "445.0-665.0",
"from" : 445.0,
"to" : 665.0,
"doc_count" : 20
},
{
"key" : "665.0-885.0",
"from" : 665.0,
"to" : 885.0,
"doc_count" : 20
},
{
"key" : "885.0-1115.0",
"from" : 885.0,
"to" : 1115.0,
"doc_count" : 10
},
{
"key" : "1115.0-1335.0",
"from" : 1115.0,
"to" : 1335.0,
"doc_count" : 0
},
{
"key" : "1335.0-1555.0",
"from" : 1335.0,
"to" : 1555.0,
"doc_count" : 0
},
{
"key" : "1555.0-1775.0",
"from" : 1555.0,
"to" : 1775.0,
"doc_count" : 0
},
{
"key" : "1775.0-*",
"from" : 1775.0,
"doc_count" : 0
}
]
},
"bucket_correlation" : {
"value" : -0.5759855613334943
}
}
]
}
}
}