ECS Logging Python installation
$ python -m pip install ecs-logging
ecs-logging-python
has formatters for the standard library logging
module and the structlog
package.
import logging
import ecs_logging
# Get the Logger
logger = logging.getLogger("app")
logger.setLevel(logging.DEBUG)
# Add an ECS formatter to the Handler
handler = logging.StreamHandler()
handler.setFormatter(ecs_logging.StdlibFormatter())
logger.addHandler(handler)
# Emit a log!
logger.debug("Example message!", extra={"http.request.method": "get"})
{
"@timestamp": "2020-03-20T18:11:37.895Z",
"log.level": "debug",
"message": "Example message!",
"ecs": {
"version": "1.6.0"
},
"http": {
"request": {
"method": "get"
}
},
"log": {
"logger": "app",
"origin": {
"file": {
"line": 14,
"name": "test.py"
},
"function": "func"
},
"original": "Example message!"
}
}
You can exclude fields from being collected by using the exclude_fields
option in the StdlibFormatter
constructor:
from ecs_logging import StdlibFormatter
formatter = StdlibFormatter(
exclude_fields=[
# You can specify individual fields to ignore:
"log.original",
# or you can also use prefixes to ignore
# whole categories of fields:
"process",
"log.origin",
]
)
The StdlibLogger
automatically gathers exc_info
into ECS error.*
fields. If you’d like to control the number of stack frames that are included in error.stack_trace
you can use the stack_trace_limit
parameter (by default all frames are collected):
from ecs_logging import StdlibFormatter
formatter = StdlibFormatter(
# Only collects 3 stack frames
stack_trace_limit=3,
)
formatter = StdlibFormatter(
# Disable stack trace collection
stack_trace_limit=0,
)
Note that the structlog processor should be the last processor in the list, as it handles the conversion to JSON as well as the ECS field enrichment.
import structlog
import ecs_logging
# Configure Structlog
structlog.configure(
processors=[ecs_logging.StructlogFormatter()],
wrapper_class=structlog.BoundLogger,
context_class=dict,
logger_factory=structlog.PrintLoggerFactory(),
)
# Get the Logger
logger = structlog.get_logger("app")
# Add additional context
logger = logger.bind(**{
"http": {
"version": "2",
"request": {
"method": "get",
"bytes": 1337,
},
},
"url": {
"domain": "example.com",
"path": "/",
"port": 443,
"scheme": "https",
"registered_domain": "example.com",
"top_level_domain": "com",
"original": "https://example.com",
}
})
# Emit a log!
logger.debug("Example message!")
{
"@timestamp": "2020-03-26T13:08:11.728Z",
"ecs": {
"version": "1.6.0"
},
"http": {
"request": {
"bytes": 1337,
"method": "get"
},
"version": "2"
},
"log": {
"level": "debug"
},
"message": "Example message!",
"url": {
"domain": "example.com",
"original": "https://example.com",
"path": "/",
"port": 443,
"registered_domain": "example.com",
"scheme": "https",
"top_level_domain": "com"
}
}
ecs-logging-python
supports automatically collecting ECS tracing fields from the Elastic APM Python agent in order to correlate logs to spans, transactions and traces in Elastic APM.
You can also quickly turn on ECS-formatted logs in your python app by setting LOG_ECS_REFORMATTING=override
in the Elastic APM Python agent.
The best way to collect the logs once they are ECS-formatted is with Filebeat:
- Follow the Filebeat quick start
- Add the following configuration to your
filebeat.yaml
file.
For Filebeat 7.16+
filebeat.inputs:
- type: filestream 1
paths: /path/to/logs.json
parsers:
- ndjson:
overwrite_keys: true 2
add_error_key: true 3
expand_keys: true 4
processors: 5
- add_host_metadata: ~
- add_cloud_metadata: ~
- add_docker_metadata: ~
- add_kubernetes_metadata: ~
- Use the filestream input to read lines from active log files.
- Values from the decoded JSON object overwrite the fields that Filebeat normally adds (type, source, offset, etc.) in case of conflicts.
- Filebeat adds an "error.message" and "error.type: json" key in case of JSON unmarshalling errors.
- Filebeat will recursively de-dot keys in the decoded JSON, and expand them into a hierarchical object structure.
- Processors enhance your data. See processors to learn more.
For Filebeat < 7.16
filebeat.inputs:
- type: log
paths: /path/to/logs.json
json.keys_under_root: true
json.overwrite_keys: true
json.add_error_key: true
json.expand_keys: true
processors:
- add_host_metadata: ~
- add_cloud_metadata: ~
- add_docker_metadata: ~
- add_kubernetes_metadata: ~
- Make sure your application logs to stdout/stderr.
- Follow the Run Filebeat on Kubernetes guide.
- Enable hints-based autodiscover (uncomment the corresponding section in
filebeat-kubernetes.yaml
). - Add these annotations to your pods that log using ECS loggers. This will make sure the logs are parsed appropriately.
annotations:
co.elastic.logs/json.overwrite_keys: true 1
co.elastic.logs/json.add_error_key: true 2
co.elastic.logs/json.expand_keys: true 3
- Values from the decoded JSON object overwrite the fields that Filebeat normally adds (type, source, offset, etc.) in case of conflicts.
- Filebeat adds an "error.message" and "error.type: json" key in case of JSON unmarshalling errors.
- Filebeat will recursively de-dot keys in the decoded JSON, and expand them into a hierarchical object structure.
- Make sure your application logs to stdout/stderr.
- Follow the Run Filebeat on Docker guide.
- Enable hints-based autodiscover.
- Add these labels to your containers that log using ECS loggers. This will make sure the logs are parsed appropriately.
labels:
co.elastic.logs/json.overwrite_keys: true 1
co.elastic.logs/json.add_error_key: true 2
co.elastic.logs/json.expand_keys: true 3
- Values from the decoded JSON object overwrite the fields that Filebeat normally adds (type, source, offset, etc.) in case of conflicts.
- Filebeat adds an "error.message" and "error.type: json" key in case of JSON unmarshalling errors.
- Filebeat will recursively de-dot keys in the decoded JSON, and expand them into a hierarchical object structure.
For more information, see the Filebeat reference.